

### Test Report

| Customer               | WAS UK Limited             |                                                 |  |  |  |
|------------------------|----------------------------|-------------------------------------------------|--|--|--|
| Vehicle                | Fiat Ducato Ambulance – LC | Fiat Ducato Ambulance – LC17GMU                 |  |  |  |
| Test                   | Ambulance Weight Reductio  | n Fuel Economy Testing                          |  |  |  |
| Millbrook Report No.   | 18/0341                    |                                                 |  |  |  |
| Millbrook Project No.  | PT0327-001-01              |                                                 |  |  |  |
|                        |                            | Benedikt Koning                                 |  |  |  |
| Author:                | J.                         | Engineer –<br>Propulsion Vehicle<br>Test        |  |  |  |
|                        |                            | Dwight Lewis                                    |  |  |  |
| Approved<br>for Issue: | Deuis                      | Senior Engineer –<br>Propulsion Vehicle<br>Test |  |  |  |
| Date:                  | 19 March 2018              |                                                 |  |  |  |

This test report shall not be reproduced, except in full, without the prior written approval of Millbrook Proving Ground Limited



## Executive Summary

This report details the methods and results obtained from a test program conducted on a converted Fiat Ducato ambulance in January 2018. A converted box-body ambulance was used to determine the potential difference in tailpipe emissions and fuel consumption when testing the vehicle in standard operating conditions at two differing vehicle inertias (4000kg and 4200kg, test conditions B and A respectively). In both conditions, the vehicle was tested over three hot start repeats of a custom created drive cycle, designed using data gathered from in-service ambulances during both normal driving and 'emergency blue light' driving conditions. All tests were driven over this cycle by the same test driver, using a single axle chassis dynamometer in Millbrook's Variable Temperature Emissions Chamber (VTEC) at 18°C.

A (B-A) test method was used with test condition order configured to remove any 'false positives' caused due to vehicle running. The order of testing is shown in Figure 1 below, the full test procedure and methodology used is detailed in the Test Procedure section later in this report.

| Test<br>Day | Test Number | Test<br>Condition | Vehicle<br>Inertia |
|-------------|-------------|-------------------|--------------------|
|             | ML02017720  | В                 | 4000kg             |
|             | ML02017721  | В                 | 4000kg             |
| 1           | ML02017722  | В                 | 4000kg             |
|             | ML02017723  | А                 | 4200kg             |
|             | ML02017724  | А                 | 4200kg             |
|             | ML02017725  | А                 | 4200kg             |

# Figure 1 - Test matrix showing test number, condition and order



Figure 2 below shows the change in the fuel consumption result with the tested in both conditions, when compared for statistical significance using ASTM method for statistical change and 95% confidence level. For the remainder of this report, the two test conditions (vehicle inertia) will be referred to as Condition A and Condition B respectively.

|                                                     | Fuel Consumption |
|-----------------------------------------------------|------------------|
|                                                     | (L/100km)        |
| Condition A (4200kg) - Average of Combined Tests    | 15.34            |
| Condition A (4200kg) - Standard Deviation/Mean x100 | 0.97             |
| Condition B (4000kg) - Average of Combined Tests    | 14.45            |
| Condition B (4000kg) - Standard Deviation/Mean x100 | 0.22             |
| Change over Condition A (4200kg) ( L/100km )        | -0.895           |
| Change over Condition A (4200kg) (%)                | -5.8%            |
| Statistically Significant?                          | Y                |

Figure 2 - Statistical significance analysis for change in fuel consumption



## Distribution

| Organisation                     | Recipient           | Format | Qty |
|----------------------------------|---------------------|--------|-----|
| WAS UK Limited                   | Mr. Darren Sullivan | PDF    | 1   |
| Augusta House<br>Hawkins Lane    |                     |        |     |
| Burton Upon Trent, Staffordshire |                     |        |     |
| DA14 1PT                         |                     |        |     |

| Millbrook Proving Ground Ltd | Contract file       | PDF   | 1 |
|------------------------------|---------------------|-------|---|
| Millbrook                    | Mr. Benedikt Koning | Paper | 1 |
| Bedford                      |                     |       |   |
| MK45 2JQ                     |                     |       |   |



## Report Revision History

| Rev. | Revision Description | Date          | Author    | Approver | Pages |
|------|----------------------|---------------|-----------|----------|-------|
| 0    | Initial release      | 19 March 2018 | B. Koning | D. Lewis | All   |
|      |                      |               |           |          |       |
|      |                      |               |           |          |       |
|      |                      |               |           |          |       |



### Contents

#### Section

#### Page Nos.

| Executive Summary           | 2  |
|-----------------------------|----|
| Distribution                | 4  |
| Report Revision History     | 5  |
| Contents                    | 6  |
| Appendices                  | 7  |
| List of Figures             | 8  |
| Objectives                  | 9  |
| Conclusions                 | 10 |
| Test Facility and Date      | 11 |
| Test Vehicle Specification  | 12 |
| Test Procedure              | 13 |
| Instrumentation             | 15 |
| Supplementary Information   | 16 |
| Test Results and Discussion | 19 |
| Photographic                | 22 |
| Further Work                | 24 |
| Appendices                  | 25 |



## Appendices

| Bag emissions summary – Condition A                   | Appendix A |
|-------------------------------------------------------|------------|
| Bag emissions summary – Condition B                   | Appendix B |
| Statistical analysis of emissions - Overall           | Appendix C |
| Statistical analysis of emissions – Normal<br>Driving | Appendix D |
| Statistical analysis of emissions – Emergency Driving | Appendix E |



## List of Figures

| Figure 1 - Test matrix showing test number, condition and order                         | 2  |
|-----------------------------------------------------------------------------------------|----|
| Figure 2 - Statistical significance analysis for change in fuel consumption             | 3  |
| Figure 3 - Characteristics of the WAS Ambulance Cycle                                   | 13 |
| Figure 4 - WAS Ambulance Cycle speed time trace                                         | 13 |
| Figure 5 - Table of measured regulated and unregulated exhaust emissions                | 17 |
| Figure 6 - Summary of regulated bag emissions with CO <sub>2</sub> and fuel consumption | 19 |
| Figure 7 - Statistical analysis of bag emissions results for 'Normal Driving'           | 20 |
| Figure 8 - Statistical analysis of bag emissions results for 'Emergency Driving'        | 20 |
| Figure 9 - Statistical analysis of bag emissions results Overall (test total)           | 21 |
| Figure 10 - Test vehicle on chassis dynamometer during testing in the VTEC              | 22 |
| Figure 11 - Test vehicle on chassis dynamometer during testing in the VTEC              | 22 |
| Figure 12 - Emissions sampling equipment connection to vehicle                          | 23 |
| Figure 13 - Emissions sampling equipment                                                | 23 |



### Objectives

- 1. Create a custom test cycle (WAS Ambulance Cycle) using data logged 'in service' in order to replicate real world driving conditions as closely as possible in a controlled laboratory environment on a chassis dynamometer.
- Conduct a series of hot start WAS Ambulance test cycles at 18°C in Millbrook's VTEC on one test vehicle at two differing vehicle inertias, 4200kg and 4000kg, to determine the potential reduction in fuel consumption when driving in Condition B as opposed to Condition A.



## Conclusions

- Data was provided from 3 in-service ambulances during 'normal' driving and 'emergency' driving. This data was used to create a custom test cycle (WAS Ambulance Cycle).
- 2. When comparing fuel consumption results of the test vehicle, driven over hot start WAS Ambulance test cycles at 18°C in Millbrook's VTEC, a statistically significant decrease of 5.8% at 95% confidence was found when testing in Condition B condition compared to Condition A.



### Test Facility and Date

All tests were performed on 30<sup>th</sup> January 2018 in the Variable Temperature Emissions Chamber at Millbrook Proving Ground Ltd.

- Address: Millbrook Proving Ground Ltd Millbrook Bedford MK45 2JQ England
- Contact: Mr. Benedikt Koning BEng (Mech) Engineer. Telephone: 01525 408358 Fax: 01525 408312 Email: <u>benedikt.koning@millbrook.co.uk</u>



# Test Vehicle Specification

| Registration Number               | : | LC17 GMU                       |
|-----------------------------------|---|--------------------------------|
| Make/Model                        | : | Fiat Ducato Box Body Ambulance |
| Engine and Emissions Standard     | : | 2.3L Diesel, Euro 6            |
| Transmission                      | : | 6-speed Manual                 |
|                                   |   |                                |
| Odometer at Beginning of Program  | : | 5168 miles                     |
| Odometer at Completion of Program | : | 5350 miles                     |
|                                   |   |                                |



## Test Procedure

#### Test cycle design

To produce test results that were representative of real world operation of the test vehicle, a custom test cycle was created for WAS Ambulance UK Limited as follows:

- 1. Data files recorded in service from 3 separate vehicles telematics systems were provided by the customer.
- 2. The data was processed, analysed and appended at appropriate points to create a twophase drive cycle. Two distinct phases were created to allow analysis of specific driving conditions.
- 3. The drive cycle was assessed for driveability and to check the validity of the emissions output.

|                            | Total<br>time<br>(s) | Time at<br>idle<br>(s) | Distance<br>(km) | Average<br>Speed<br>(km/h) | Max<br>Speed<br>(km/h) | Maximum<br>Acceleration<br>(m/s <sup>2</sup> ) | Maximum<br>Deceleration<br>(m/s <sup>2</sup> ) |
|----------------------------|----------------------|------------------------|------------------|----------------------------|------------------------|------------------------------------------------|------------------------------------------------|
| Phase 1<br>(Non-Emergency) | 1177                 | 314                    | 6.295            | 26.3                       | 48.3                   | 3.1                                            | -3.1                                           |
| Phase 2<br>(Emergency)     | 1263                 | 23                     | 15.865           | 46.1                       | 107.8                  | 4.5                                            | -5.4                                           |
| Overall                    | 2440                 | 337                    | 22.160           | 38.0                       | 107.8                  | 4.5                                            | -5.4                                           |

Figure 3 - Characteristics of the WAS Ambulance Cycle

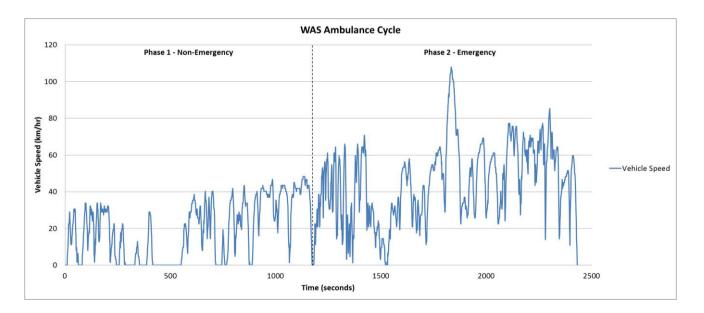



Figure 4 - WAS Ambulance Cycle speed time trace



#### Test Method

The test method used was a B-A method. This method was completed using one test driver over 1 test day, performing three hot-start tests on the test vehicle in each of the two test conditions. This method was used in order to ensure that any benefit due to possible change in frictional characteristics of the vehicle over the course of the testing would not cause a 'false benefit'.

The following procedure was used to each test condition.

- 1. Set simulated inertia to condition B (4000kg)
- 2. Perform 15 minute Millbrook Warm up (5 minutes @ 60km/h, 5 minutes @ 40km/h, 5 minutes @ 30km/h).
- Perform hot start WAS Ambulance Cycle Test 1, logging dynamometer data and exhaust temperature → Coastdown check immediately after test.
- 4. Perform 15 minute Millbrook Warm up (5 minutes @ 60km/h, 5 minutes @ 40km/h, 5 minutes @ 30km/h).
- Perform hot start WAS Ambulance Cycle Test 2, logging dynamometer data and exhaust temperature → Coastdown check immediately after test.
- Perform 15 minute Millbrook Warm up (5 minutes @ 60km/h, 5 minutes @ 40km/h, 5 minutes @ 30km/h).
- Perform hot start WAS Ambulance Cycle Test 3, logging dynamometer data and exhaust temperature → Coastdown check immediately after test.
- 8. Ensure CO<sub>2</sub> Coefficient of Variance for tests 1-3 is less than 2%.
- 9. Change simulated inertia to condition A (4200kg)
- 10. Perform 15 minute Millbrook Warm up (5 minutes @ 60km/h, 5 minutes @ 40km/h, 5 minutes @ 30km/h).
- 11. Perform hot start WAS Ambulance Cycle Test 4, logging dynamometer data and exhaust temperature  $\rightarrow$  Coastdown check immediately after test.
- 12. Perform 15 minute Millbrook Warm up (5 minutes @ 60km/h, 5 minutes @ 40km/h, 5 minutes @ 30km/h).
- 13. Perform hot start WAS Ambulance Cycle Test 5, logging dynamometer data and exhaust temperature  $\rightarrow$  Coastdown check immediately after test.
- 14. Perform 15 minute Millbrook Warm up (5 minutes @ 60km/h, 5 minutes @ 40km/h, 5 minutes @ 30km/h).
- Perform hot start WAS Ambulance Cycle Test 6, logging dynamometer data and exhaust temperature → Coastdown check immediately after test.
- 16. Ensure  $CO_2$  Coefficient of Variance for tests 4-6 is less than 2%.



### Instrumentation

| Item                    | Ser. No. | Calibration due<br>date |
|-------------------------|----------|-------------------------|
| Rebel XT CAN-BUS Logger | RBL619   | N/A                     |



## Supplementary Information

#### Simulated road load

The test was tested under two conditions using the following test inertias, 4200kg and 4000kg, these inertias were specified by the customer. The road load (rolling, mechanical and aerodynamic friction losses) for each condition was derived from the ECE Reg. 101 'Cookbook' load for a 2-wheel drive van weighing over 2610kg as a basis and  $F_0$  re-calculated for the required simulated vehicle inertia. The calculations for the mass and rolling resistance road load coefficient,  $F_0$  are detailed below.

#### Condition A

 $F_0$  calculation: Adjusted  $F_0$  = Initial  $F_0$  + ( $\Delta$ Inertia x g x  $C_{rr}$ ) Where initial  $F_0$  = 12.87 and g = 9.81m/s<sup>2</sup> and  $C_{rr}$  = 0.008 (Coefficient of rolling resistance) Thus Adjusted  $F_0$  = 12.87 + ((4200-2610) x 9.81 x 0.008))

 $F_0 = 164.34N$ 

| Test Inertia   | 4,200     | kg                  |
|----------------|-----------|---------------------|
| F <sub>0</sub> | 164.34    | Ν                   |
| F <sub>1</sub> | 0.000     | N/km/h              |
| F <sub>2</sub> | 0.08762   | N/km/h <sup>2</sup> |
| F <sub>3</sub> | 0.0000000 | N/km/h <sup>3</sup> |

#### Condition B

 $F_0$  Calculation: Adjusted  $F_0$  = Initial  $F_0$  + ( $\Delta$ Inertia x g x C<sub>rr</sub>) Where initial  $F_0$  = 12.87 and g = 9.81m/s<sup>2</sup> and C<sub>rr</sub> = 0.008 (Coefficient of rolling resistance) Thus Adjusted  $F_0$  = 12.87 + ((4000-2610) x 9.81 x 0.008))

 $F_0 = 148.64N$ 

| Test Inertia   | 4,000     | kg                  |
|----------------|-----------|---------------------|
| F <sub>0</sub> | 148.64    | Ν                   |
| F <sub>1</sub> | 0.000     | N/km/h              |
| F <sub>2</sub> | 0.08762   | N/km/h <sup>2</sup> |
| F <sub>3</sub> | 0.0000000 | N/km/h <sup>3</sup> |



#### **Emissions testing**

Exhaust emissions levels were recorded during each phase for HC, CO, NO<sub>x</sub> and CO<sub>2</sub>. A combined total was also determined for each pollutant. In addition to the bag emissions, second by second data was also sampled and recorded. Fuel consumption was calculated using the carbon balance method. All testing was completed at 18°C, as agreed with the customer.

| F           | Pollutant                             | Measurement<br>Technique     | Frequency | Analysis Technique           |
|-------------|---------------------------------------|------------------------------|-----------|------------------------------|
|             | Total hydrocarbons<br>(HC)            | Continuously integrated      | Per phase | Flame ionisation             |
|             | Carbon monoxide<br>(CO)               | Bag                          | Per phase | Non-dispersive Infra-<br>Red |
| Regulated   | Nitrogen Oxides<br>(NO <sub>x</sub> ) | Bag                          | Per phase | Chemiluminescence            |
|             | Particulate Mass<br>(PM)              | Continuous<br>modal tailpipe | Per Test  | Gravimetric Paper<br>Filter  |
|             | Particulate Number<br>(PN/km)         | Continuous<br>modal tailpipe | Per Test  | Advanced Particle<br>Counter |
|             | Carbon dioxide<br>(CO <sub>2</sub> )  | Bag                          | Per phase | Non-dispersive Infra-<br>Red |
|             | Total hydrocarbons<br>(HC)            | Continuous<br>modal tailpipe | 1Hz       | Flame ionisation             |
|             | Carbon monoxide<br>(CO)               | Continuous<br>modal tailpipe | 1Hz       | Non-dispersive Infra-<br>Red |
| Unregulated | Nitrogen Oxides<br>(NO <sub>x</sub> ) | Continuous<br>modal tailpipe | 1Hz       | Chemiluminescence            |
|             | Nitric oxide (NO)                     | Continuous<br>modal tailpipe | 1Hz       | Chemiluminescence            |
|             | Carbon dioxide<br>(CO <sub>2</sub> )  | Continuous<br>modal tailpipe | 1Hz       | Non-dispersive Infra-<br>Red |

#### Figure 5 - Table of measured regulated and unregulated exhaust emissions



#### Shake down testing

Prior to the commencement of testing, a series of 'shakedown tests' were conducted in order to ensure the following:

- 1. The validity of the emissions measurement and data output of the test cycle could be assessed.
- 2. The test driver had the opportunity to familiarise himself with the newly created cycle.
- 3. The engineer had the opportunity to assess the cycle's driveability based on technician feedback and data analysis.



## Test Results and Discussion

#### **Criteria and Results**

The aim of this test program was to determine any change in fuel consumption and exhaust emissions of a Fiat Ducato Ambulance when tested using two inertia conditions. Figure 6 below shows the regulated bag emissions results along with fuel consumption and Carbon Dioxide ( $CO_2$ ). Emissions results for the two vehicle test conditions will be analysed in three ways:

- Statistical analysis of emissions and fuel consumption for 'Normal' driving (phase 1)
- Statistical analysis of emissions and fuel consumption for 'Emergency' driving (phase 2)
- Statistical analysis of emissions and fuel consumption overall (complete test)

The purpose of statistical analysis is to determine the following; Firstly, it will determine what the difference between the two test conditions is and secondly, if there is a difference, it will determine whether this difference is statistically significant as per the ASTM method for statistical significance.

| Test<br>Number | Test<br>Condition | Vehicle<br>Inertia | HC<br>(g/km) | CO<br>(g/km) | NO <sub>x</sub><br>(g/km) | CO <sub>2</sub><br>(g/km) | PM<br>(g/km) | PN<br>(PN/km) | Fuel<br>Cons<br>(L/100km) |
|----------------|-------------------|--------------------|--------------|--------------|---------------------------|---------------------------|--------------|---------------|---------------------------|
| ML02017720     | В                 | 4000kg             | 0.013        | 0.008        | 1.920                     | 382.5                     | 0.0030       | 1.63E+10      | 14.45                     |
| ML02017721     | В                 | 4000kg             | 0.007        | 0.010        | 2.035                     | 381.5                     | 0.0028       | 1.58E+10      | 14.41                     |
| ML02017722     | В                 | 4000kg             | 0.018        | 0.010        | 2.090                     | 383.6                     | 0.0028       | 1.65E+10      | 14.19                     |
| ML02017723     | А                 | 4200kg             | 0.019        | 0.007        | 2.273                     | 402.1                     | 0.0030       | 1.81E+10      | 15.19                     |
| ML02017724     | А                 | 4200kg             | 0.011        | 0.008        | 2.512                     | 411.6                     | 0.0032       | 1.59E+10      | 15.54                     |
| ML02017725     | А                 | 4200kg             | 0.017        | 0.010        | 2.387                     | 405.0                     | 0.0028       | 1.57E+10      | 15.30                     |

Figure 6 - Summary of regulated bag emissions with CO2 and fuel consumption



#### Discussion

Emissions and fuel consumption reduction between test conditions

Emissions and fuel consumption results between Condition A and Condition B were compared for each of the three different test results; normal driving, emergency driving and overall. These group-sets were compared for statistical significance using the ASTM method for statistical significance with a 95% confidence level.

Figure 7 below shows the results of statistical analysis between Condition A and Condition B for Normal driving. Using ASTM method for statistical significance with a 95% confidence level, there is a statistically significant decrease in  $NO_x$  emissions of 14.5%.

| Normal Driving (Phase 1)                          | НС     | со    | NO <sub>x</sub> | CO <sub>2</sub> | PN/km     | Fuel<br>Cons |
|---------------------------------------------------|--------|-------|-----------------|-----------------|-----------|--------------|
| Analyser                                          | BAG    | BAG   | BAG             | BAG             | MODAL     | (Carb Bal)   |
| Condition A - Average of Combined Tests<br>(g/km) | 0.025  | 0.015 | 1.236           | 365.9           | 1.99E+10  | 13.82        |
| Condition A - Standard Deviation/Mean x100        | 8.99   | 27.51 | 1.28            | 0.61            | 11.01     | 0.60         |
| Condition B - Average of Combined Tests<br>(g/km) | 0.019  | 0.017 | 1.056           | 354.0           | 1.86E+10  | 13.37        |
| Condition B - Standard Deviation/Mean x100        | 42.56  | 30.36 | 10.18           | 2.16            | 10.08     | 2.17         |
|                                                   | •      |       | •               |                 | (PN/km)   | (L/100km)    |
| Change over Condition A (g/km)                    | -0.006 | 0.002 | -0.179          | -11.9           | -1.31E+09 | -0.450       |
| Change over Condition A (%)                       | -24.9% | 11.4% | -14.5%          | -3.3%           | -6.6%     | -3.3%        |
| Statistically Significant?                        | N      | N     | Y               | N               | N         | Ν            |

Figure 7 - Statistical analysis of bag emissions results for 'Normal Driving'

Figure 8 below shows the results of statistical analysis between Condition A and Condition B for Emergency driving. Using ASTM method for statistical significance with a 95% confidence level, there is a statistically significant decrease in  $NO_x$  emissions of 16.0% and a statistically significant decrease in  $CO_2$  emissions and fuel consumption of 6.7%.

| Emergency Driving (Phase 2)                    | НС     | со    | NO <sub>x</sub> | CO2   | PN/km    | Fuel<br>Cons |
|------------------------------------------------|--------|-------|-----------------|-------|----------|--------------|
| Analyser                                       | BAG    | BAG   | BAG             | BAG   | MODAL    | (Carb Bal)   |
| Condition A - Average of Combined Tests (g/km) | 0.012  | 0.006 | 2.853           | 422.4 | 1.51E+10 | 15.95        |
| Condition A - Standard Deviation/Mean x100     | 31.86  | 7.18  | 4.56            | 1.12  | 10.24    | 1.11         |
| Condition B - Average of Combined Tests (g/km) | 0.010  | 0.006 | 2.397           | 393.9 | 1.52E+10 | 14.88        |
| Condition B - Standard Deviation/Mean x100     | 35.00  | 26.78 | 2.45            | 0.56  | 5.59     | 0.56         |
|                                                |        | •     |                 |       | (PN/km)  | (L/100km)    |
| Change over Condition A (g/km)                 | -0.002 | 0.001 | -0.456          | -28.4 | 2.50E+07 | -1.074       |
| Change over Condition A (%)                    | -17.3% | 12.2% | -16.0%          | -6.7% | 0.2%     | -6.7%        |
| Statistically Significant?                     | N      | N     | Y               | Y     | N        | Y            |

Figure 8 - Statistical analysis of bag emissions results for 'Emergency Driving'



Figure 9 below shows the results of statistical analysis between Condition A and Condition B for the test cycle overall. Using ASTM method for statistical significance with a 95% confidence level, there is a statistically significant decrease in  $NO_x$  emissions of 15.7% and a statistically significant decrease in  $CO_2$  emissions and fuel consumption of 5.8%.

| Overall (Phase 1 and 2 combined)                  | НС     | со    | NO <sub>x</sub> | CO <sub>2</sub> | РМ      | PN/km     | Fuel<br>Cons  |
|---------------------------------------------------|--------|-------|-----------------|-----------------|---------|-----------|---------------|
| Analyser                                          | BAG    | BAG   | BAG             | BAG             | FILTER  | MODAL     | (Carb<br>Bal) |
| Condition A - Average of Combined Tests<br>(g/km) | 0.016  | 0.008 | 2.391           | 406.2           | 0.0030  | 1.65E+10  | 15.34         |
| Condition A - Standard Deviation/Mean x100        | 20.80  | 14.08 | 4.08            | 0.98            | 5.09    | 6.68      | 0.97          |
| Condition B - Average of Combined Tests<br>(g/km) | 0.013  | 0.009 | 2.015           | 382.5           | 0.0029  | 1.62E+10  | 14.45         |
| Condition B - Standard Deviation/Mean x100        | 36.40  | 9.36  | 3.51            | 0.22            | 3.27    | 1.91      | 0.22          |
|                                                   |        |       |                 |                 |         | (PN/km)   | (L/100km)     |
| Change over Condition A (g/km)                    | -0.003 | 0.001 | -0.376          | -23.7           | -0.0001 | -3.60E+08 | -0.895        |
| Change over Condition A (%)                       | -20.8% | 11.7% | -15.7%          | -5.8%           | -2.5%   | -2.2%     | -5.8%         |
| Statistically Significant?                        | N      | N     | Y               | Y               | N       | N         | Y             |

Figure 9 - Statistical analysis of bag emissions results Overall (test total)



# Photographic



Figure 10 - Test vehicle on chassis dynamometer during testing in the VTEC



Figure 11 - Test vehicle on chassis dynamometer during testing in the VTEC





Figure 8 - Emissions sampling equipment connection to vehicle



Figure 13 - Emissions sampling equipment



### Further Work

At this stage, no further work is currently under discussion.



## Appendices

### Appendix A – Bag emissions summary Condition A

|                                       | _                                    | BULANCE                            |                      | _                           | r                                 |                                          |                    | ILLBROOK                                  |
|---------------------------------------|--------------------------------------|------------------------------------|----------------------|-----------------------------|-----------------------------------|------------------------------------------|--------------------|-------------------------------------------|
| Customer:                             |                                      | WAS UK L                           | imited               |                             |                                   |                                          |                    |                                           |
| Customer A                            | ddress:                              | August Ho                          | use, Haw             | kins Lane,                  | Burton Up                         | oon Trent                                | ,Staffords         | hire, DE14 1PT                            |
| Test Purpos                           | e.                                   |                                    |                      |                             |                                   | ******                                   |                    | g vehicle weight)                         |
| Vehicle No:                           |                                      | LC17GMU                            |                      | y                           | Site No.                          | r                                        |                    | IOMETER SETTINGS                          |
| Vehicle Type:                         |                                      | Fiat Ducato A                      | mbulance             |                             | <u> </u>                          |                                          | INERTIA            | 4200 kg                                   |
| Engine:                               |                                      | 2.3L Diesel                        |                      |                             | ~                                 |                                          | F°                 | 164.34 N                                  |
| Transmission:                         |                                      | 6-speed Manu                       | ıal                  | *******                     |                                   |                                          | F <sup>1</sup>     | 0.0000 N/kmh                              |
| Fuel Type:                            |                                      | Forecourt Die                      |                      |                             |                                   |                                          |                    | 0.08762 N/kmh                             |
| Fuel Batch No:                        |                                      | N/A                                |                      |                             |                                   |                                          | F <sup>3</sup>     | 0.0000000 N/kmh                           |
| Millbrook Projec                      | ct No:                               | PT0327-001-0                       | 1                    |                             |                                   |                                          |                    |                                           |
| Test No                               | ML02017723                           | 30-Jan-18                          |                      |                             |                                   |                                          |                    | Fuel Cons                                 |
| Odo                                   | 5271                                 | UNITS                              | НС                   | со                          | NOx                               | CO <sub>2</sub>                          | PM                 | (Carb Bal)                                |
| Phase 1                               | Normal Driving                       | g/km                               | 0.028                | 0.010                       | 1.223                             | 364.5                                    | N/A                | 13.77                                     |
| Phase 2                               | Emergency                            | g/km                               | 0.020                | 0.006                       | 2.695                             | 417.1                                    | N/A                | 15.75                                     |
|                                       | ned result                           | g/km                               | 0.019                | 0.007                       | 2.273                             | 402.1                                    | 0.0030             | litres/100km                              |
|                                       |                                      |                                    |                      |                             | . A                               | Pn/km                                    | 1.81E+10           | 15.19                                     |
| Test No.<br>Odo<br>Phase 1<br>Phase 2 | ML02017724<br>5294<br>Normal Driving | 30-Jan-18<br>UNITS<br>g/km<br>g/km | HC<br>0.023<br>0.007 | <b>CO</b><br>0.016<br>0.005 | NO <sub>x</sub><br>1.258<br>3.013 | <b>CO</b> <sub>2</sub><br>369.0<br>428.6 | PM<br>N/A<br>N/A   | Fuel Cons<br>(Carb Bal)<br>13.94<br>16.18 |
|                                       | Emergency<br>ned result              | g/кт<br>g/km                       | 0.007                | 0.005                       | 3.013<br>2.512                    | 428.6<br>411.6                           | 0.0032             | litres/100km                              |
| COMDI                                 | neu result                           | y/Kill                             | 0.011                | 0.000                       | 2.312                             | Pn/km                                    | 0.0032<br>1.59E+10 | 15.54                                     |
| Test No.<br>Odo                       | ML02017725<br>5318                   | 30-Jan-18<br>UNITS                 | НС                   | со                          | NO <sub>x</sub>                   | CO₂                                      | PM                 | Fuel Cons<br>(Carb Bal)                   |
|                                       | Normal Driving                       | g/km                               | 0.024                | 0.020                       | 1.227                             | 364.1                                    | N/A                | 13.76                                     |
| Phase 1                               | Emergency                            | g/km                               | 0.015                | 0.006                       | 2.851                             | 421.4                                    | N/A                | 15.91                                     |
| Phase 2                               | ned result                           | g/km                               | 0.017                | 0.010                       | 2.387                             | 405.0                                    | 0.0028             | litres/100km                              |
| Phase 2                               |                                      |                                    |                      |                             |                                   | Pn/km                                    | 1.57E+10           | 15.30                                     |
| Phase 2                               |                                      |                                    | 0.016                | 0.008                       | 2.391                             | 406.2                                    | 0.0030             | 15.34                                     |
| Phase 2<br>Combi                      | Combined Tests                       | (g/km)                             | ,                    | 8                           | 4.08                              | 0.98                                     | 5.09               | 0.97                                      |
| Phase 2<br>Combi                      | Combined Tests<br>eviation/Mean x1   |                                    | 20.80                | 14.08                       | 1 4.00                            |                                          |                    | 1 0.0.                                    |
| Phase 2<br>Combi                      | wation/Mean x1                       |                                    | 20.80<br>Date: 31.01 | A                           | Approving E                       |                                          |                    | Date: 02.02.2018                          |

This summary sheet shall not be reproduced in full without the written approval of Millbrook Proving Ground Ltd.



MILLBROOK

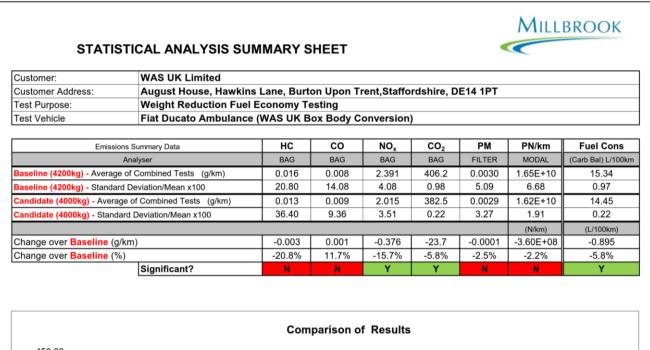
#### Appendix B – Bag emissions summary Condition B

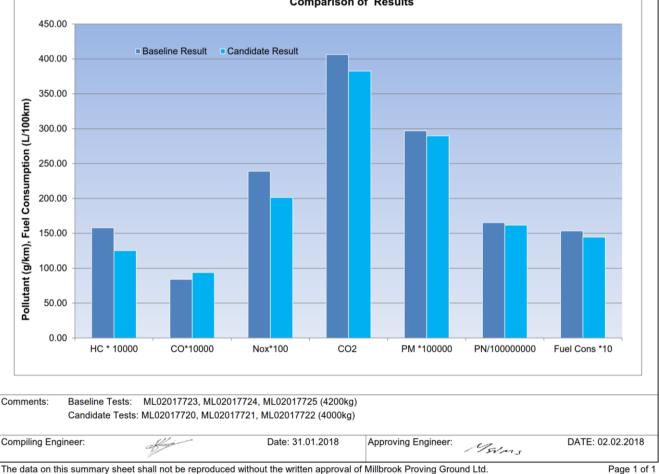
### WAS AMBULANCE CYCLE DIESEL EMISSIONS TEST SUMMARY SHEET

| Customer:             | WAS UK Limited              |                   |                      |                |                              |
|-----------------------|-----------------------------|-------------------|----------------------|----------------|------------------------------|
| Customer Address:     | August House, Hawkins La    | ine, Burton Upo   | n Trent              | Staffordsl     | nire, DE14 1PT               |
| Test Purpose:         | Weight Reduction Fuel Econo | omy Testing - Car | ndidate <sup>-</sup> | Test (4000)    | g vehicle weight)            |
| Vehicle No:           | LC17GMU                     | Site No.          | 2                    | DYNAM          | OMETER SETTINGS              |
| Vehicle Type:         | Fiat Ducato Ambulance       |                   |                      | INERTIA        | 4000 kg                      |
| Engine:               | 2.3L Diesel                 |                   |                      | F°             | 148.64 N                     |
| Transmission:         | 6-speed Manual              |                   |                      | F <sup>1</sup> | 0.0000 N/kmh                 |
| Fuel Type:            | Forecourt Diesel            |                   |                      | F <sup>2</sup> | 0.08762 N/kmh <sup>2</sup>   |
| Fuel Batch No:        | N/A                         |                   |                      | F <sup>3</sup> | 0.0000000 N/kmh <sup>3</sup> |
| Millbrook Project No: | PT0327-001-01               |                   |                      |                |                              |

| Test No. M | 1L02017720     | 30-Jan-18 |       |       |       |                 |          | Fuel Cons    |
|------------|----------------|-----------|-------|-------|-------|-----------------|----------|--------------|
| Odo        | 5201           | UNITS     | HC    | СО    | NOx   | CO <sub>2</sub> | PM       | (Carb Bal)   |
| Phase 1    | Normal Driving | g/km      | 0.016 | 0.013 | 0.931 | 347.6           | N/A      | 13.13        |
| Phase 2    | Emergency      | g/km      | 0.012 | 0.006 | 2.314 | 396.4           | N/A      | 14.97        |
| Combin     | ed result      | g/km      | 0.013 | 0.008 | 1.920 | 382.5           | 0.0030   | litres/100km |
|            |                |           |       |       |       | Pn/km           | 1.63E+10 | 14.45        |

| r        |                |           | 1     |       |       |       |          | 1            |
|----------|----------------|-----------|-------|-------|-------|-------|----------|--------------|
| Test No. | ML02017721     | 30-Jan-18 |       |       |       |       |          | Fuel Cons    |
| Odo      | 5225           | UNITS     | HC    | со    | NOx   | CO2   | PM       | (Carb Bal)   |
| Phase 1  | Normal Driving | g/km      | 0.011 | 0.024 | 1.044 | 349.6 | N/A      | 13.21        |
| Phase 2  | Emergency      | g/km      | 0.005 | 0.004 | 2.430 | 394.2 | N/A      | 14.89        |
| Comb     | ined result    | g/km      | 0.007 | 0.010 | 2.035 | 381.5 | 0.0028   | litres/100km |
|          |                |           |       |       |       | Pn/km | 1.58E+10 | 14.41        |

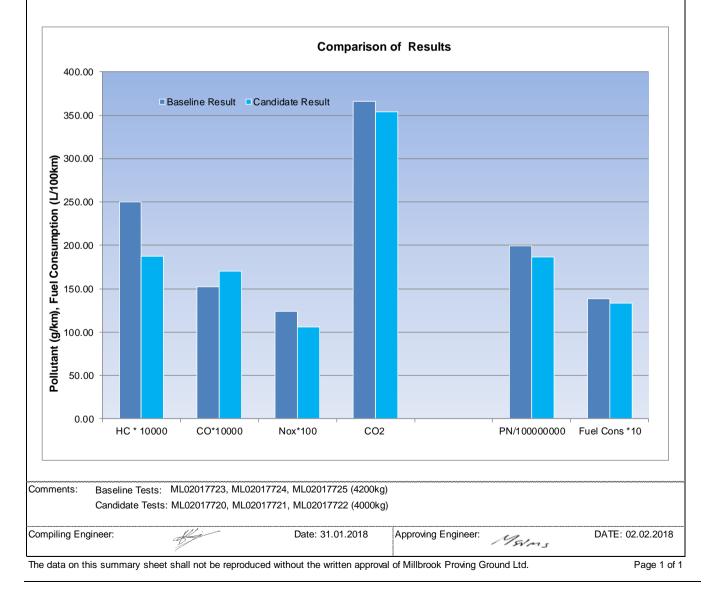

| Test No.     | ML02017722     | 30-Jan-18  |       |       |       |                 |                           | Fuel Cons             |
|--------------|----------------|------------|-------|-------|-------|-----------------|---------------------------|-----------------------|
| Odo          | 5248           | UNITS      | HC    | со    | NOx   | CO <sub>2</sub> | PM                        | (Carb Bal)            |
| Phase 1      | Normal Driving | g/km       | 0.030 | 0.014 | 1.194 | 364.7           | N/A                       | 13.78                 |
| Phase 2      | Emergency      | g/km       | 0.013 | 0.008 | 2.447 | 391.1           | N/A                       | 14.77                 |
| Comb         | ined result    | g/km       | 0.018 | 0.010 | 2.090 | 383.6           | 0.0028                    | litres/100km          |
|              |                |            |       |       |       |                 |                           |                       |
|              |                |            |       |       |       | Pn/km           | 1.65E+10                  | 14.49                 |
| Average of ( | Combined Tests | <br>(g/km) | 0.013 | 0.009 | 2.015 | Pn/km<br>382.5  | <b>1.65E+10</b><br>0.0029 | <b>14.49</b><br>14.45 |


| Compiling Engineer: | Date: 30.01.2018 | Approving Engineer: | Date: 02.02.2018 |
|---------------------|------------------|---------------------|------------------|
|                     | D/               | 1                   | alan c           |
| /                   | //               | -                   | · · · · · ·      |
|                     |                  |                     |                  |

This summary sheet shall not be reproduced in full without the written approval of Millbrook Proving Ground Ltd.



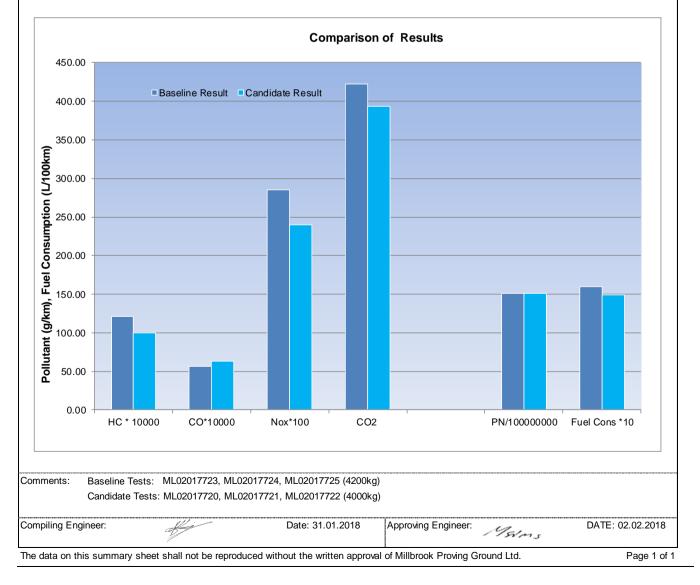
#### Appendix C – Statistical analysis of emissions - Overall








#### Appendix D – Statistical analysis of emissions – Normal Driving


|                                                   |                                                    |                                                                        |       |        |                 |        | Millbrook |                    |  |  |
|---------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|-------|--------|-----------------|--------|-----------|--------------------|--|--|
| STATIS                                            | TICAL ANALYSIS SUN                                 | MARY                                                                   | SHEET |        |                 |        |           |                    |  |  |
| Customer:                                         | WAS UK Limited                                     | WAS UK Limited                                                         |       |        |                 |        |           |                    |  |  |
| Customer Address:                                 | August House, Hawkin                               | August House, Hawkins Lane, Burton Upon Trent, Staffordshire, DE14 1PT |       |        |                 |        |           |                    |  |  |
| Test Purpose:                                     | Weight Reduction Fue                               | Weight Reduction Fuel Economy Testing                                  |       |        |                 |        |           |                    |  |  |
| Test Vehicle                                      | Fiat Ducato Ambulance                              | Fiat Ducato Ambulance (WAS UK Box Body Conversion) - Normal Driving    |       |        |                 |        |           |                    |  |  |
|                                                   |                                                    |                                                                        |       |        |                 |        |           |                    |  |  |
| Emissions Summary Data                            |                                                    | HC                                                                     | СО    | NOx    | CO <sub>2</sub> | PM     | PN/km     | Fuel Cons          |  |  |
|                                                   | Analyser                                           |                                                                        | BAG   | BAG    | BAG             | FILTER | MODAL     | (Carb Bal) L/100km |  |  |
| Baseline (4200kg) - Aver                          | seline (4200kg) - Average of Combined Tests (g/km) |                                                                        | 0.015 | 1.236  | 365.9           | N/A    | 1.99E+10  | 13.82              |  |  |
| Baseline (4200kg) - Stan                          | seline (4200kg) - Standard Deviation/Mean x100     |                                                                        | 27.51 | 1.28   | 0.61            | N/A    | 11.01     | 0.60               |  |  |
| Candidate (4000kg) - Ave                          | erage of Combined Tests (g/km)                     | 0.019                                                                  | 0.017 | 1.056  | 354.0           |        |           | 13.37              |  |  |
| Candidate (4000kg) - Standard Deviation/Mean x100 |                                                    | 42.56                                                                  | 30.36 | 10.18  | 2.16            | N/A    | 10.08     | 2.17               |  |  |
|                                                   |                                                    |                                                                        |       |        |                 |        | (N/km)    | (L/100km)          |  |  |
| Change over Baseline (g/km)                       |                                                    | -0.006                                                                 | 0.002 | -0.179 | -11.9           | N/A    | -1.31E+09 | -0.450             |  |  |
| Change over Baseline (%)                          |                                                    | -24.9%                                                                 | 11.4% | -14.5% | -3.3%           | N/A    | -6.6%     | -3.3%              |  |  |
|                                                   | Significant?                                       | N                                                                      | Ν     | Y      | N               | N/A    | N         | N                  |  |  |





#### Appendix E – Statistical analysis of emissions – Emergency Driving

|                                                       |                                                                        |                                                                        |       |        |                 |        | Mill     | BROOK              |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------|--------|-----------------|--------|----------|--------------------|--|--|
| STATIS                                                | TICAL ANALYSIS SUI                                                     | MMARY                                                                  | SHEET |        |                 |        |          |                    |  |  |
| Customer:                                             | WAS UK Limited                                                         | WAS UK Limited                                                         |       |        |                 |        |          |                    |  |  |
| Customer Address:                                     | August House, Hawkins Lane, Burton Upon Trent, Staffordshire, DE14 1PT |                                                                        |       |        |                 |        |          |                    |  |  |
| Test Purpose:                                         | Weight Reduction Fuel Economy Testing                                  |                                                                        |       |        |                 |        |          |                    |  |  |
| Test Vehicle                                          | Fiat Ducato Ambulance                                                  | Fiat Ducato Ambulance (WAS UK Box Body Conversion) - Emergency Driving |       |        |                 |        |          |                    |  |  |
|                                                       | •                                                                      |                                                                        |       |        |                 | -      | _        |                    |  |  |
| Emissions Summary Data                                |                                                                        | HC                                                                     | CO    | NOx    | CO <sub>2</sub> | PM     | PN/km    | Fuel Cons          |  |  |
| Analyser                                              |                                                                        | BAG                                                                    | BAG   | BAG    | BAG             | FILTER | MODAL    | (Carb Bal) L/100kn |  |  |
| Baseline (4200kg) - Average of Combined Tests (g/km)  |                                                                        | 0.012                                                                  | 0.006 | 2.853  | 422.4           | N/A    | 1.51E+10 | 15.95              |  |  |
| Baseline (4200kg) - Standard Deviation/Mean x100      |                                                                        | 31.86                                                                  | 7.18  | 4.56   | 1.12            | N/A    | 10.24    | 1.11               |  |  |
| Candidate (4000kg) - Average of Combined Tests (g/km) |                                                                        | 0.010                                                                  | 0.006 | 2.397  | 393.9           | N/A    | 1.52E+10 | 14.88              |  |  |
| Candidate (4000kg) - Standard Deviation/Mean x100     |                                                                        | 35.00                                                                  | 26.78 | 2.45   | 0.56            | N/A    | 5.59     | 0.56               |  |  |
|                                                       |                                                                        |                                                                        |       |        |                 |        | (N/km)   | (L/100km)          |  |  |
| Change over <b>Baseline</b> (g/km)                    |                                                                        | -0.002                                                                 | 0.001 | -0.456 | -28.4           | N/A    | 2.50E+07 | -1.074             |  |  |
| Change over Baseline (%)                              |                                                                        | -17.3%                                                                 | 12.2% | -16.0% | -6.7%           | N/A    | 0.2%     | -6.7%              |  |  |
|                                                       | Significant?                                                           | N                                                                      | N     | Y      | Y               | N/A    | N        | Y                  |  |  |





End of Report